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Purpose. This project was done to develop a mathematical model for
optimizing composite predictors based on gene expression profiles
from DNA arrays and proteomics.
Methods. The problem was amenable to a formulation and solution
analogous to the portfolio optimization problem in mathematical fi-
nance: it requires the optimization of a quadratic function subject to
linear constraints. The performance of the approach was compared to
that of neighborhood analysis using a data set containing cDNA ar-
ray-derived gene expression profiles from 14 multiple sclerosis pa-
tients receiving intramuscular inteferon-�1a.
Results. The Markowitz portfolio model predicts that the covariance
between genes can be exploited to construct an efficient composite.
The model predicts that a composite is not needed for maximizing the
mean value of a treatment effect: only a single gene is needed, but the
usefulness of the effect measure may be compromised by high vari-
ability. The model optimized the composite to yield the highest mean
for a given level of variability or the least variability for a given mean
level. The choices that meet this optimization criteria lie on a curve of
composite mean vs. composite variability plot referred to as the “ef-
ficient frontier.” When a composite is constructed using the model, it
outperforms the composite constructed using the neighborhood
analysis method.
Conclusions. The Markowitz portfolio model may find potential ap-
plications in constructing composite biomarkers and in the pharma-
cogenomic modeling of treatment effects derived from gene expres-
sion endpoints.

KEY WORDS: biomarkers; composite; Markowitz portfolio; phar-
macogenomic modeling.

INTRODUCTION

Genomic technologies such as DNA arrays and proteom-
ics are now capable of simultaneously measuring the expres-
sion of thousands of genes from single samples. These tech-
niques are being increasingly applied to problems in disease
diagnosis, drug response, and pharmacodynamics.

Such massively multiplexed measurement systems pro-
vide a broad snapshot of the state of the biologic system that
is particularly useful for hypothesis generation. The genes and
expression patterns that specifically characterize the disease
or treatment—informative genes and expression patterns—
must then be gleaned from this snapshot. However, the min-
ing and analysis of gene expression profiling data sets can be
formidable because they will contain measurements on both
informative and uninformative genes. The initial analysis
challenge often is to identify the subset of informative genes;
in principle, this can be accomplished by selecting genes that

meet statistical significance criteria in an appropriate test. The
statistical issues are complicated by the varied sources of ran-
dom error and bias and the large number of multiple com-
parisons involved in array experiments. However, these issues
have been addressed in the literature (1–3).

Here, an approach for the important downstream prob-
lem of identifying an optimal subset of genes for the response
prediction problem is formulated and developed. The solu-
tion will yield the weights in which the expression of indi-
vidual genes should be combined to yield an optimal compos-
ite treatment effect measure that is based on multiple geno-
mic endpoints.

The most commonly used approach for constructing such
composite pharmacodynamic measures is neighborhood
analysis (4). In this approach, the subset of genes with strong-
est (positive or negative) associations with the class distinc-
tion of interest is selected for the composite measure. The
normalized expression values of these genes are linearly com-
bined in proportion to the strength of the association to pro-
vide a composite measure. The results will show that the
model proposed yields composite measures that are distinct
from and superior to those from neighborhood analysis.

MATERIALS AND METHODS

Study Population

With informed consent, peripheral blood anticoagulated
with heparin was obtained by venipuncture from 14 consecu-
tive patients (10 female, 4 male; mean age 42.2 years, standard
deviation 9.23 years) with active relapsing remitting MS [Ex-
panded Disability Status Scale (EDSS) range 1–4] who were
to receive IFN-� therapy. Patients had not previously re-
ceived IFN-� and were clinically stable for the preceding 4
weeks. Additional blood samples were obtained from these
patients 24 h after the first IM administration of 30 �g inter-
feron-�1a (IFN-�1a, Avonex®). A total of 14 pairs of samples
were analyzed using the method.

Total RNA Preparation

Peripheral blood mononuclear cells were isolated from
the anticoagulated blood within 4 h of collection using the
Hypaque-Ficoll method (Histopaque reagent, Sigma Chemi-
cal, St. Louis, MO). Monocytes were depleted from the pe-
ripheral blood mononuclear cells by the plastic adhesion
method. Total RNA was prepared from the monocyte-
depleted peripheral blood mononuclear cells using the TRI
reagent method (Molecular Research Center Inc., Cincinnati,
OH) (5).

DNA Array Protocol

The DNA arrays, specifically GeneFilters GF211, from
Research Genetics Inc. (Huntsville, AL), which contain ap-
proximately 4,000 named human genes, were used. GeneFil-
ters contain 5,188 spots, each with 5 ng of an approximately
1,000 base long, 5�-end-derived PCR fragments. Briefly, 5 �g
of total RNA was radioactively labeled with 33P CTP using
reverse transcriptase. The labeled cDNA was used to probe
the GF211 membrane. The membranes were washed, and the
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bound radioactivity was visualized using a Cyclone phospho-
rimager (Packard Instrument Company, Meriden, CT).

Data Analysis

The images from the phosphorimager were imported di-
rectly into Pathways software program (Research Genetics
Inc., Huntsville, AL). The images were aligned, gridded, and
quantified according to recommended procedures. Filters
were normalized using the intensity from all spots, and the
software also normalized for intensity ranges in two-filter
comparisons. The data were exported to an Excel spreadsheet
(Microsoft Corp., Bellevue, WA) for further analysis. Statis-
tical analysis was carried out using Excel. An �-value of 0.05
was used to determine statistical significance.

Before modeling, the pre- and posttreatment expression
changes of three genes, �2 microglobulin, signal transducer,
and activator of transcription-1 and 1-8D, which are known to
be IFN-� inducible, were compared using the paired t test.
The paired t test demonstrated that the expression levels of all
three IFN-�-inducible genes were significantly higher in the
posttreatment samples, confirming that the treatment had
evoked a pharmacologic response.

Data Transformations and Terminology

All calculations for neighborhood analysis and in our
model used expression data that were natural logarithm trans-
formed.

In this analysis, change in logarithm-transformed gene
expression was treated analogously to “assets” in mathemati-
cal finance. The fractional change of gene expression Ei for
the ith gene on treatment is defined in terms of the pre- and
posttreatment expression levels Xi, as:

Ei = ln� Xi,after treatment

Xi,before treatment
� for up-regulated genes

Ei = −ln� Xi,after treatment

Xi,before treatment
� for down-regulated genes

Neighborhood Analysis

The method of Golub et al. was used (4). The strength of
association, Pi, between the expression of the ith gene and the
treatment effect was measured using the formula:

Pi =
�i,after treatment − �i,before treatment

�i,after treatment + �i,before treatment
for up-regulated genes

Pi = −
�i,after treatment − �i,before treatment

�i,after treatment + �i,before treatment
for down-regulated genes

The �i,before treatment and �i, after treatment are mean values,
whereas �i,before treatment and �i,after treatment are the standard
deviations of the natural logarithm–transformed expression
levels for the ith gene before and after treatment, respec-
tively.

The genes in the 0.5th and 99.5th percentiles were used
to construct the neighborhood analysis predictor. Because the
array contained approximately 4,000 known genes, the com-
posite predictor consisted of the 20 IFN-�1a up-regulated

genes and 20 down-regulated genes with largest magnitudes
for Pi. There were several known IFN-regulated genes in the
predictor, and further follow-up validation studies are under
way for many of the predictor genes that had not previously
been reported as being IFN-� modulated. The identity of
these genes (data not shown) is not critical to the validity of
the Markowitz model methodology.

The Ei change after treatment of each gene was statisti-
cally significant at � � 0.05 in a two-tailed, paired t test. We
conducted power calculations using Cohen’s d with pooled
standard deviations based on independent groups (6). The
minimum value of Cohen’s d was 0.9 (range 0.9–2.0), and for
14 samples, the estimate for power is approximately 0.85.

For each patient, j, the composite neighborhood analysis
predictor, �j, was calculated using Pi and the Ei,j using:

�j = �
i=1

i=40

PiEi,j

Thus, in neighborhood analysis, logarithm of the expression
level for each gene was weighted in proportion to the strength
of its Pi value.

Markowitz Portfolio Calculations

The portfolio problem was solved using a quadratic pro-
gramming approach. The up-regulated and down-regulated
genes in the neighborhood analysis composite were treated as
“assets,” and the Ei values were used for the vector of asset
returns.

The program available online at http://www.iimahd.ernet.
in/∼jrvarma/software/ was used. The algorithm used by the
program is based on Markowitz’s approach described in
Ref. 7.

Assessing Predictive Capabilities

The predictive capabilities of the Markowitz portfolio
model were compared to neighborhood analysis using a varia-
tion of the leave-one-out method.

The ability of each composite to predict whether a given
patient’s sample belonged to the pretreatment or posttreat-
ment class was assessed by withholding data corresponding to
the individual patient. The weights of the genes in the
Markowitz portfolio and neighborhood analysis composites
were kept fixed at values calculated using the composite
dataset. For each sample j, from the kth patient, the following
predictor value, Predictor j, was calculated:

Predictorj = �
i=1

i=40

wi�Xi,j − Xi�

The wi are the weights of the ith gene in the composite of
interest; Xi,j is the log-transformed expression value of the ith
gene in the jth sample; and X is the “leave-one-out mean” of
the ith gene in the dataset of pretreatment and posttreatment
expression values but without the kth patient.

The sample was assigned to the pretreatment class if the
predictor was negative and to the posttreatment class if the
predictor was positive.
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DERIVATIONS AND RESULTS

Assessment of Treatment Effects in a Model for
Two Genes

For illustrative purposes, I first analyze a drug study in
which a pretreatment sample and a posttreatment sample are
obtained at time, t � T, after drug administration. The pre-
sentation of this case is adapted from the treatment by
Wilmott (8) and is intended to facilitate further development
of the derivation, allow visualization of the results and to
highlight the critical variables.

If there are only two genes, 1 and 2, in the composite M
with mean fractional changes, E1 and E2, weights w1 and w1,
standard deviation of mean fractional changes, �1 and �2, and
correlation coefficients, �, in the composite, the mean, M̄, and
variance, �2

M, of the composite containing logarithm-
transformed expression values are:

M = w1E1 + �1 − w1�E2 (1)
�M

2 = w1
2�1

2 + 2�1 − w1�w1��1�2 + �1 − w1�2�2
2 (2)

Because uncertainty is present, one cannot focus on maximiz-
ing M alone because this could potentially result in a highly
variable composite measure. This makes it necessary for the
optimization to identify points that have the highest M value
for a given �M or the lowest �M for a given M.

The implications of this model are best visualized in a
plot of M vs. �M (Fig. 1). The lines are often referred to as the
“critical lines,” and the analysis as “mean-variance analysis.”
The M vs. �M plot is a hyperbola for the two-gene case. The
bold portion of the critical line is referred to as the “efficient
frontier” because all combinations of the two genes on the
bold line are efficient, and combinations not on the line are
inefficient. For a given correlation coefficient value, the por-
tion of the critical line shown in dashed gray line is not effi-
cient because by moving to the bold portion of the line, the
user can further reduce the standard deviation of the

composite,�M, at a given M or increase M at a given standard
deviation.

Several counterintuitive results emerge from this simple
analysis. If the goal is to maximize the mean change on treat-
ment, a composite is not necessary, and only the gene with the
highest predicted mean change is needed. Although all mean–
variance efficient combinations of the two genes lie on the
critical line, there is no single optimal set of weights: the
individual has to select a weight based on his/her personal
tolerance for variability. The individual may choose the point
on the critical line associated with the lowest variability
(called the minimum variance point) but may have to com-
promise on magnitude of the mean change in the composite.
Importantly, because the correlation coefficient contributes
to variability of the composite, a composite comprised of
genes with negative or low correlation coefficients will have
less variability than a composite comprised of genes strongly
correlated with one another, all other factors remaining the
same.

Extension to Multiple Genes

If the fractional change in expression of the ith gene is Ei,
we define the composite measure function M containing the
N informative genes as:

M = �
i=1

N

wiEi (3)

The optimization of the composite measure requires selecting
the weights wi for each gene so that M is maximal. The wi are
constrained to sum to unity. This linear constraint can be
expressed as:

�
i=1

N

wi = 1 (4)

However, the variability associated with expression profiling
measurements requires the addition of a layer of complexity
to this simple formulation. Because of variability, the Ei are
random variables, and we will ideally wish to maximize the M̄,
the mean value of the composite measure function subject to
linear constraints:

Max
Wl,...,WN

�M = �
i=1

N

wiEi� (5)

The Ei are mean fractional change in expression values, ide-
ally population means, and the maximization is accomplished
by varying weights. Likewise, the variance, �2

M, of the com-
posite measure M is:

�M
2 = �

i=1

N

�
j=1

N

wiwjVij (6)

The Vij is the covariance matrix and is related to the covari-
ance, �ij, the standard deviations, �ii and �jj, for genes i and j,
respectively, and the correlation matrix �ij by:

Vij =
�ij

��ii��jj

= �ii �jj �ij (7)

Although the underlying analysis of the multigene case is very
similar to that of the two-gene case, the computational com-

Fig 1. Figure 1 shows the Markowitz critical line for the two-gene
case. The fold changes in expression levels of the two genes were set
to 1.2 and 1.4, respectively. The corresponding Ei values were 0.182
and 0.336, and the standard deviations were 0.1 and 0.2, respectively.
The Markowitz critical line is graphed for the five correlation coef-
ficient values, 1, 0.5, 0, −0.5, −1, indicated. The solid line represents
the efficient portion of the frontier, and the gray regions are not
efficient.
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plexity increases, and an optimization technique called qua-
dratic programming is needed to determine the weights wi.
The quadratic programming algorithm reformulates the effi-
cient frontier problem to minimizing the following objective
function for each value of a parameter �, subject to linear
constraints:

Min
Wl,...,WN

��M
2 − �M� (8)

For illustrative purposes, we used the five genes from the
neighborhood analysis predictor with the highest Ei values.
Table I summarizes the Ei values and the covariance matrix
used as input to the Markowitz portfolio algorithm, and Fig.
2 shows the efficient frontier.

The weights for the five genes, genes 1–5, at the point of
minimum variance were: 0.00, 0.222, 0.272, 0.443, 0.063, re-
spectively. Interestingly, for this set of inputs, gene 1 was not
needed for the minimum variance composite. The mean
value, M, and standard deviation, �M, at the minimum vari-
ance point were 0.508 and 0.222, respectively.

Comparison of the Markowitz Portfolio Model to
Neighborhood Analysis

The weights predicted by neighborhood analysis were
compared to those from the Markowitz portfolio model for
the 14 patients for whom expression profiles after IFN-�1a
treatment were available.

Figure 3A shows the weights assigned to each gene by
the two methods. With a few exceptions, the neighborhood
analysis method assigns approximately equal weights to each
gene. In contrast, the Markowitz portfolio model selectively
weights many fewer genes than neighborhood analysis. Figure
3B shows the corresponding efficient frontier, and the single
point summarizes results from neighborhood analysis. The
mean value M and standard deviation �M from neighborhood
analysis were 0.296 and 0.078, respectively. In contrast, the
mean value M and standard deviation �M at the minimum-
variance point from the Markowitz portfolio analysis were
0.271 and 0.0044, respectively. The Markowitz efficient fron-
tier has higher mean at a standard deviation of 0.078 and
lower standard deviation at a mean of 0.296.

The neighborhood analysis predictor, which contained 40
genes, correctly predicted 13 of 14 pretreatment samples and
all 14 posttreatment samples for an overall accuracy of 96.4%.
The minimum-variance Markowitz portfolio, which contained
only 12 genes, correctly predicted all 14 pretreatment samples
and 13/14 posttreatment samples. The single gene with the

Fig 2. Markowitz efficient frontier for the five-gene case. The calcu-
lations used experimental values from 14 patients for the five genes in
the neighborhood analysis predictor with the highest Ei values. The
parameters in Table I were used.

Fig 3. Comparisons of the results obtained from the Markowitz port-
folio model to those from neighborhood analysis. (A) A step graph
that shows the weights assigned to individual genes by the Markowitz
model (solid line) and the weights assigned by neighborhood analysis.
The weights are shown for the node with the minimum variance. (B)
The Markowitz efficient frontier is the solid line, and the single point
represents the results from neighborhood analysis. The x-axis is on
logarithmic scale.

Table I. Inputs to the Markowitz Portfolio Model for the Five Genes
with the Highest Ei Values

Gene Ei Value

Covariance Matrix

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Gene 1 0.8992 1.5229 0.0862 0.3777 0.0660 0.0746
Gene 2 0.5693 0.0862 0.2151 −0.0081 0.0048 0.0280
Gene 3 0.5349 0.3777 −0.0081 0.1899 −0.0040 0.0193
Gene 4 0.4699 0.0660 0.0048 −0.0040 0.1010 0.0729
Gene 5 0.4384 0.0746 0.0280 0.0193 0.0729 0.0882
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highest mean correctly predicted only 18 of 28 samples. In the
quadratic programming solution for the Markowitz model,
genes enter and leave at so-called “corner” portfolios, and all
points in the efficient frontier can be represented as a linear
sum of two corner portfolios. The prediction capabilities of
over 20 Markowitz model corner portfolios nearest the mini-
mum-variance portfolio were also examined. The four corner
portfolios nearest the minimum-variance point all predicted
27 of 28 samples correctly; the next nearest set of eight corner
portfolios predicted 26 of 28 samples correctly. Thus, the
Markowitz model results in composites that are comparable
to neighborhood analysis in predictive capabilities.

DISCUSSION

Here, the usefulness of a model for constructing compos-
ite biomarkers for treatments was demonstrated. The model
is adapted from the Markowitz portfolio model of mathemati-
cal finance and provides useful insights into the requirements
for efficient composites and the conditions under which they
will outperform single endpoints in clinical studies.

The model implicitly assumes log-normal distributions
for ratio of post- and pretreatment expression levels. This
requirement is not particularly limiting because the log-
normal distribution describes a wide range of therapeutic re-
sponses. However, the logarithm of the ratio of post- to pre-
treatment expression levels for the 40 genes in the neighbor-
hood analysis composite were calculated and tested for
normality with the Kolmogorov–Smirnov test. The statistical
testing did not reject any of the null hypotheses, indicating
that log-normal requirements are likely to be met for gene
expression data from arrays.

The important methodologic distinction between the
model proposed and the neighborhood analysis is the role of
the gene–gene covariances. Unlike the neighborhood analysis
method, which only includes associations between the indi-
vidual genes and the treatment effects, the adaptation of the
Markowitz model includes gene–gene correlations and is able
to generate more efficient results with fewer genes. Although
sample estimates for the covariance and other inputs were

used, appropriate Bayesian priors or Stein estimators for
these inputs can also be used when appropriate. The qua-
dratic programming procedure involves numerical optimiza-
tion, and it is important to have the best available estimates
for the inputs.

Although the model was applied to gene array data, the
principles involved are quite general and can readily be
adapted for composite endpoints from other measurements
such as those from proteomics and from physiologic measure-
ments from multichannel recorders.
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